
Formalizing GDOI Group Key Management Requirements
in NPATRL ∗

Catherine Meadows, Paul Syverson
Center for High Assurance Computer Systems

Naval Research Laboratory
Washington, DC 20375-5320, USA

{meadows, syverson}@itd.nrl.navy.mil

Iliano Cervesato
Advanced Engineering and Sciences Division

ITT Industries, Inc.
Alexandria, VA 22303-1410, USA

iliano@itd.nrl.navy.mil

ABSTRACT
Although there is a substantial amount of work on formal
requirements for two and three-party key distribution pro-
tocols, very little has been done on requirements for group
protocols. However, since the latter have security require-
ments that can differ in important but subtle ways, we be-
lieve that a rigorous expression of these requirements can be
useful in determining whether a given protocol can satisfy
an application’s needs. In this paper we make a first step in
providing a formal understanding of security requirements
for group key distribution by using the NPATRL language,
a temporal requirement specification language for use with
the NRL Protocol Analyzer. We specify the requirements
for GDOI, a protocol being proposed as an IETF standard,
which we are formally specifying and verifying in coopera-
tion with the MSec working group.

1. INTRODUCTION
Before we can determine whether or not a security pro-

tocol satisfies its requirements, it is necessary to determine
what those requirements are. Requirements are in general
well understood for key distribution protocols involving two
or three parties, and a number of formalizations of such re-
quirements exist. But, they are not as well understood for
group key distribution protocols, where keys may possibly
be distributed among an arbitrarily large group of principals
that may join or leave the group at any time. In this pa-
per we attempt to fill this gap by developing a set of formal
requirements for the GDOI group key management proto-
col [1], a protocol which we have been formally specifying
and verifying as part of a joint effort with the IETF MSec
working group. To do this, we used the NPATRL require-
ments language [16], a temporal language for cryptographic
protocol requirements intended for use with the NRL Pro-
tocol Analyzer [10, 11]. What we found as a result of this
effort was that requirements for group key distribution pro-

∗Meadows and Syverson were supported by ONR.
Cervesato was partially supported by NSF grant INT98-
15731 “Logical Methods for Formal Verification of Software”
and NRL under contract N00173-00-C-2086.

This paper is authored by an employee(s) of the United States Government
and is in the public domain.
CCS’01,November 5-8, 2001, Philadelphia, Pennsylvania, USA.
ACM 1-58113-385-5/01/0011.

tocols were little understood, and that as much or more work
needed to be put into developing a set of formal security re-
quirements as into the formal specification of the protocol
itself. Moreover, although these requirements were devel-
oped specifically for GDOI, we believe that they are generic
enough so that they could be applied to many other group
key management protocols with the appropriate modifica-
tions. The added complexity of the requirements resulting
from the needs of secure group communication has also in-
duced us to develop NPATRL into a full-scale logic that
can be used to reason about requirements as well as specify
them. We describe the logic and show how it can be applied
in simplifying requirements.

A group key distribution protocol is one in which a key is
distributed to members of a group, which may be of arbi-
trary size for some applications. This key may be distributed
by the members of the group themselves (as in the Cliques
protocol [13]), by a centralized key distributor, or by a col-
lection of key distributors. Such protocols may support a
number of different applications, such as secure multicast
and secure dynamic coalitions. They usually must support
the joining and leaving of members and possibly other oper-
ations. They may also put restrictions on joining members
having access to old keys or on leaving members having ac-
cess to new keys.

Superficially, group key distribution protocols seem to sat-
isfy requirements very similar to pairwise key distribution
protocols. Both have requirements for secrecy (no one out-
side the group should learn the key), authentication (recip-
ients of the key should know where it came from and what
it was intended for) and freshness (recipients should not be
tricked into accepting an old key). But when we look at
these requirements more closely, especially at secrecy and
freshness, we see some important differences.

These differences arise from the fact that the notion of
“session”, which is so important to pairwise protocols, does
not exist, at least not in the same sense, for group protocols.
In a pairwise protocol, a session is determined by two com-
municating principals (possibly three, if a key server is used)
and a key. Keys should not be learned by any other than
the two or three communicating principals, and a key should
be unique to a session. However, group protocols usually do
not have such a notion of individual sessions strongly tied
to principals and keys. Instead the paradigm is of a group
which principals may enter and leave. Keys may be updated
as principals enter or leave a group, in order that incoming
principals have no access to old keys, or outgoing princi-

green
Text Box
NRL Release Number 01-1221.1-1131

pals have no access to new keys. But keys may be updated
for other reasons as well that have nothing to do with the
composition of a group. Thus a freshness requirement that
specifies a unique key per session will have no meaning here.

Likewise, the definition of ‘secrecy’ also needs to be re-
considered. In a pairwise protocol, all we require is that a
session key only be known to the principals involved in that
session. Whether or not one of the principals is dishonest
and compromises the key is not usually a concern, as long
as it is prevented from threatening the integrity of other ses-
sions. However, in the case of group protocol, admitting a
dishonest member into a group can introduce new risks. Not
only can the member learn the group key while it is present,
but depending upon how the protocol is designed, it may
or may not be able to learn keys used before it joined the
group, or keys generated after it left.

The rest of this paper is organized as follows. In Section
2 we give an overview of the GDOI protocol. In Section
3 we give an overview of the NPATRL logic, and describe
the normal form for NPATRL requirements for the NRL
Protocol Analyzer. In Section 4 we present the NPATRL
requirements for GDOI, and we also describe our system
for building secrecy requirements. Section 5 concludes the
paper. In Appendix A we show how we were able to use the
logic to remove recursiveness from the secrecy requirements
and reduce them to normal form.

2. AN OVERVIEW OF GDOI
The GDOI (for Group Domain Of Interpretation) proto-

col [1] is intended to be used with the Internet Key Exchange
(IKE) protocol [7, 5] to allow a Group Controller and Key
Server (GCKS) to distribute keys to members of a group.
Although it does not specify any mechanisms such as key
hierarchies [2] for efficiently distributing keys to group mem-
bers or for expelling or adding members, it is designed to be
compatible with the use of such techniques. We have been
working with the IETF MSec Working Group to develop
a set of formal requirements, as well as a formal analysis,
in order to demonstrate the usefulness of formal methods
in the design or cryptographic protocols and in expediting
the standardization process by providing formal evidence of
soundness.

GDOI uses three categories of keys. Category 1 keys are
the pairwise keys shared between the GCKS and potential
members. Category 2 keys are key-encryption keys that are
used to protect the Category 3, or traffic encryption keys.

For GDOI, the Category 1 (pairwise) keys are distributed
via IKE Phase 1, which is described in [7, 5]. Key-encryption
keys and traffic-encryption keys are created by the GCKS.
The GCKS distributes these keys to the group as a whole
by a groupkey-push message encrypted with the current key-
encryption key. The GCKS maintains a sequence number
SEQ that is incremented every time a new groupkey-push
datagram is sent. The current value of the sequence number
is included in the groupkey-push message. This allows group
members to verify that a message is not a replay of one that
they have already received. The groupkey-push datagram is
also digitally signed by the GCKS using its private key so
that receivers can verify that it was sent by the GCKS and
not by another group member.

The groupkey-push message appears as follows in [1]:

Member GCKS or Delegate

←− HDR*, SEQ, SA, KD, [CERT,] SIG

The term HDR* indicates that everything is encrypted after
the header, in this case using the current key encryption key.
SEQ is the sequence number, SA the security association for
this key payload, which gives such information as algorithms
used, key lifetimes, etc., and KD the new keying material.
SIG is the digital signature of the message, and CERT is an
optional certificate for the signature key.

When a principal wants to join a group, it takes part in
a four-message groupkey-pull exchange with the GCKS. All
messages are encrypted and authenticated with the pairwise
key shared between the two principals. In the first message,
the principal sends a request to join the group, including the
group identifier and a nonce Ni to help in verifying freshness.

The GCKS responds with its own nonce Nr and with the
group Security Association, which describes the mechanisms
(e.g. encryption algorithms) and policies used by the group.
It holds off on sending the keying material itself until it
can verify that the request is recent. The group member
responds with a hash (HASH(3)) taken over the two nonces.
The GCKS sends the keying material and the current value
of the sequence number in the last message.

There are also some optional fields in the last two mes-
sages. If it is required by the group policy, the member
can send its own part of a Diffie-Hellman key exchange in
the third message (KE I), and the GCKS can respond with
its part of the exchange in the fourth message (KE R). The
resulting Diffie-Hellman key is used to encrypt the group
keying material by use of exclusive-or. The purpose of this
is to provide perfect forward secrecy: even if a pairwise key
is compromised, the intruder can learn only keys distributed
after the compromise, not those distributed before.

Another option allows the two principals to verify that
each is authorized to act in their respective roles. This is the
proof-of-possession (POP) option, where each party includes
a public key certificate signed by a relevant authority, and
proves his or her possession of the key by using it to sign
the two nonces that were exchanged earlier in the protocol.

The four messages sent in the groupkey-pull exchange ap-
pear as follows in [1]:

Initiator (Member) Responder (GCKS)

HDR*, HASH(1), Ni, ID −→
←− HDR*, HASH(2), Nr, SA

HDR*, HASH(3) [, KE I] −→
[,CERT] [,POP I]

←− HDR*, HASH(4), [KE R,] SEQ,

KD [,CERT] [,POP R]

where Ni and Nr are the two nonces, SA is the security associ-
ation, KE I and KE R are the optional Diffie-Hellman halves,
CERT, POP I, POP R are are the certificates and signatures
used in the optional proof-of-possession exchange, and SEQ

and KD are the sequence number and keying material (en-
crypted with the Diffie-Hellman key if that is used), respec-
tively. The notation HDR* means, as before, that all informa-
tion after the header is encrypted, this time with the shared
Category 1 key. The hashes in the exchange are computed
over the information sent in the respective messages. More
detail may be found in [1].

Note that in no place does GDOI specify means for elimi-
nating members from the group. This is accomplished using

something called a key hierarchy. Basically, a key hierarchy
is a tree, the root of which is the actual key used for encryp-
tion. Nodes of the tree encrypt and authenticate the nodes
above it. When a principal is admitted to the group, it is
assigned a leaf of the tree. When it leaves the group, only
the (limited) portion of the tree it needs to compute the
group key ough to be updated. This allows access control
for both entering and leaving members to be enforced in an
efficient way, as well as providing extra security beyond that
provided by the key-encryption key used to encrypt the push
message, since a new key will be protected by the keys below
it in the hierarchy. See [2] for a discussion and overview of
key hierarchies.

3. THE NPATRL LOGIC

3.1 The NRL Protocol Analyzer Model
The NRL Protocol Analyzer, or NPA for short, is a com-

puter-assisted verification tool for security protocols which
combines model checking and theorem-proving techniques to
establish authentication and secrecy properties. We present
merely a brief overview here. The interested reader is invited
to consult [10, 11] for further details.

A protocol is modeled as a number of communicating state
machines, each associated with a different roles. Their tran-
sitions correspond to the actions that comprise the corre-
sponding role. At run time, roles are executed by honest
principals who faithfully follow the protocol. Several in-
stances can be executing at the same time, and they are
distinguished by means of a unique round number. The
intruder is modeled after the Dolev-Yao adversary [4]. Dis-
honest principals share their keys and other confidential in-
formation with the adversary.

The messages in transit, the information held by each
principal and the intruder, the runs currently being exe-
cuted, and the point that each of them has reached consti-
tute the global state for the NPA. A protocol action imple-
ments a local transformation with global effects on the state.
The initial state is implicit in the protocol specification.

In order to verify a protocol, a specification is fed into
the run-time system of the NRL Protocol Analyzer together
with the description of a family of states that correspond
to attack situations. The system applies protocol actions
backwards from these target states until it either reaches the
initial state, or it exhausts all possibilities for doing so. As it
regresses back towards the initial state, the NPA maintains
a trace of the sequence of actions that, when executed, lead
to the target state. If the initial state is ever reached, the
resulting trace is a potential attack. If all possibilities are
exhausted, there is no attack of the kind sought. Although
the search space is in general infinite, the NPA incorporates
techniques based on theorem proving that have the effect
of soundly restricting the search to a finite abstraction, in
most cases.

Traces are sequences of events of the following form:

event(P, Q, T, L, N)

In general, any protocol or intruder state transition may be
assigned an event. The arguments are interpreted as follows:
P is the principal executing the transition, Q is the set of
the other parties involved in it, T is a name that identifies
the transition, L is a set of relevant words, and N is the
local round number of the transition. Typical categories of
events correspond to receiving a message, accepting data as

valid as a result of performing certain checks and sending a
message. For example:

event(user(A, honest), [user(B, H)], initiator accept key, [K], N)

This event describes the execution of a transition called
“initiator accept key” by honest principal A that involves a
key K and some other principal B who may or may not be
honest.

3.2 The NPATRL Syntax
The NRL Protocol Analyzer has successfully analyzed a

number of protocols, sometimes uncovering previously un-
known flaws [10, 11]. But, secrecy and authentication goals
are awkwardly expressed, as states that should not be reach-
able from the initial state. This unintuitive and occasionally
error prone way of writing requirements would have made it
very difficult to use the NPA for large protocols.

The NRL Protocol Analyzer Temporal Requirements Lan-
guage, better known as NPATRL (and pronounced “N Pa-
trol”), was designed to address these shortcomings [16]. This
formalism makes available the abstract expressiveness of a
logical language to specify requirements at a high enough
level to capture intuitive goals precisely, and yet it can be
interpreted in the NPA search engine.

NPATRL requirements are logical expressions whose ato-
mic formulas are event statements, which mostly correspond
to events in the NRL Protocol Analyzer; they include events
denoting actions by honest principals that can be found in
the trace of an NPA search, and the special learn event that
indicates the acquisition of information by the adversary.
NPATRL’s syntax for events is similar but not identical to
the NPA’s. In NPATRL, the NPA accept event given above
is written:

initiator accept key(user(A, honest), user(B, H), K, N)

The logical infrastructure of NPATRL consists of the usual
connectives ¬, ∧, →, etc, and the temporal modality 3

which is interpreted as “happened at some time before” or
“previously”.

For example, we may have the following requirement:

If an honest principal A accepts a key K for com-
municating with another honest principal B, then a
server must have previously generated and sent this
key with the idea that it should be used for communi-
cations between A and B, and that both are expected
to be honest.

We can use NRL Protocol Analyzer events to construct an
NPATRL formula that expresses it:

initiator accept key(user(A, honest), user(B, H), K, N)

→ 3 svr send key(server, (user(A, honest), user(B, honest)), K, N)

This formula is a simple expression of the above requirement.
Intuitively, the protocol verification process changes from

what we discussed in the previous section by using NPATRL
requirements where the final state appeared. More precisely,
we first need to map every NPATRL event statement to an
actual event in the NPA specification of the protocol. Then,
we take the negation of each NPATRL requirement as a
way to characterize the states that should be unreachable
if and only if that requirement is satisfied. At this point,
we perform the analysis as in the previous section: if the
NPA proves that this goal is unreachable, the protocol sat-
isfies the original requirement. Otherwise, it returns a trace

corresponding to an attack on the protocol that potentially
invalidates the requirement.

A couple of particular points about NPATRL expressions:
Events occur exactly once. This means that atomic formu-
las are true at exactly one point in a trace (if at all). There
is nothing in NPATRL syntax to automatically guarantee
this uniqueness; it is assumed that event statements con-
tain enough individuating information in their arguments
or predicate to enforce this. Note that NPA guarantees this
uniqueness, in part by having all events indexed both by lo-
cal runs and timestamps. Second, “3” is a strict operator;
it includes times prior to the present time but does not in-
clude the present time. It is also convenient, especially when
stating axioms, to have the dual operator in our language,
“2”, read as “at all previous times” or “always previously”.
It can be defined logically by, 2ϕ ↔ ¬3¬ϕ, where ϕ is an
formula.

NPATRL has been extensively used in the last few years
to analyze protocols with various characteristics. Among
these, generic requirements have been given for two-party
key distribution protocols [14, 15] and two-party key agree-
ment protocols [16]. The most ambitious specification un-
dertaken using NPATRL has involved the requirements of
the credit card payment transaction protocol SET (Secure
Electronic Transactions) [9]. SET proved particularly dif-
ficult to specify for several reasons. One of these was that
the objects to be authenticated are dynamic: unlike keys,
what is agreed upon changes as it passes from one principal
to another. This exercise revealed several ambiguities [9].

Our current task, formalizing group key management re-
quirements, has its own dynamics. Even when the data
objects (keys) are constant, the principals sharing them are
not. And the very notion of a session is much less well
defined than in previously studied cases. Perhaps most sig-
nificantly, until this point we had been able to use NPATRL
as just a language. All statements were interpreted into the
NPA and evaluated there. However, we have found it neces-
sary to reason at the level of NPATRL itself. This requires
a logic for our logical language.

3.3 NPATRL Axioms
We give axioms of a normal modal logic adequate to cap-

ture the needed temporal reasoning. Readers are referred to
standard texts for details on systems of modal and temporal
logic [3, 6, 8].

Our logic has two inference rules:

Modus Ponens: From ϕ and ϕ → ψ infer ψ.

Necessitation: From ` ϕ infer ` 2ϕ.

‘`’ is a metalingusitic symbol. ‘Γ ` ϕ’ means that ϕ is deriv-
able from the set of formulae Γ (and the axioms as stated
below). ‘` ϕ’ means that ϕ is a theorem, i.e., derivable
from axioms alone. Axioms are all instances of tautologies
of classical propositional logic, and all instances of the fol-
lowing axiom schemata

K 2(ϕ → ψ) → (2ϕ → 2ψ)

4 2ϕ → 22ϕ

W 2(2ϕ → ϕ) → 2ϕ

L 2((ϕ ∧ 2ϕ) → ψ) ∨ 2((ψ ∧ 2ψ) → ϕ)

The first axiom guarantees that our temporal operators re-
spect the non-temporal part of the logic. The second one

guarantees that temporal reasoning is transitive. The third
guarantees that sets of events are always finite and strictly-
ordered. The last guarantees that events are weakly-connec-
ted (comparable). Note that in the presence of K and W,
the 4 axiom becomes redundant. We have explicitly in-
cluded it because we specifically use transitivity in our ar-
guments in appendix A. There is some discussion of logics
containing these axioms in [6] and [8]. In [8], axiom L is
called “Lem0” after Lemmon. Space limitations preclude a
more detailed presentation here.

3.4 NPA Acceptable Expressions
Although NPATRL was originally designed to be used

with the NRL Protocol Analyzer, it is actually much more
expressive than the set of specifications accepted by the tool.
Thus, in order to make NPATRL usable with NPA, it is nec-
essary to identify a subset of NPATRL requirements that are
acceptable by NPA, and to put them into a normal form that
is parsable by NPA.

An NRL Protocol Analyzer query can be specified in terms
of three things: terms known by the intruder, values of local
state variables, and sequences of events that did or did not
occur. The part of the query concerning sequences of events
corresponds most closely to the NPATRL events. However,
these events only correspond to user actions, and do not in-
clude learn events, which correspond to intruder actions. In
order to capture intruder learn events, we will need to make
use of the part of the query that specifies terms known by
the intruder. This can cause some difficulties, since an NPA
query does not specify when the terms were learned by the
intruder. However, we can simplify matters by limiting our-
selves to queries which specify the learning of only one term.
This is usually adequate, and when it is not, we can usually
transform the NPATRL requirement using our logic so that
the restriction is satisfied.

Given that, we specify a normal form R for NPA accept-
able expressions in a BNF grammar as follows. We let w
stand for any learn event, a stand for any atomic event that
is not a learn event, and let b stand for any atomic event.

E ::= 3a 3(a ∧ E)
F ::= E E ∨ F E ∧ F
G ::= ¬E ¬E ∧ G
R ::= ¬b a → G b → F a → G ∨ F a → G ∧ F

3w → G 3w → G ∨ F 3w → G ∧ F

4. REQUIREMENTS FOR GDOI

4.1 Assumptions
We assume that each group is managed by one GCKS (it

is possible to have more, but the means for doing this are
not specified in the GDOI document). We assume that a
GCKS may manage more than one group, and that a mem-
ber may belong to more than one group. We assume that
members may both join and leave a group, and a member
may have concurrent and/or overlapping memberships in
the same group.

We assume the usual Dolev-Yao style intruder, who can
read, alter, destroy, and create traffic, and is in league with
any dishonest principals, who share all data with it. We
assume that all GCKSs are honest, but that some members
may be dishonest. Note that as a result of this assumption
we make no distinction between the intruder’s learning a

key and a principal learning a key to which it is not entitled.
Only dishonest principals will attempt to gain access to keys
to which they are not entitled, and dishonest principals are
assumed to share all information with the intruder.

We assume that there are two ways in which a key can be
compromised that cannot be prevented by the protocol. One
is by stealing: the intruder may learn the key by cryptanal-
ysis, theft, etc. even if all possessors of the key are honest.
The other is by having a dishonest member join the group.

Finally, in order to simplify matters, we only define events
and requirements for key encryption keys, not traffic encryp-
tion keys. Since traffic encryption keys are protected by key
encryption keys and distributed via the same mechanisms, it
should be relatively straightforward to derive their require-
ments from the requirements for key encryption keys.

4.2 GDOI Events
In general, events map to actual messages and vice versa.

However, since the central messages of the groupkey-pull
exchange simply defer computation in order to resist forms
of denial-of-service attacks [12] and the NPA does not cur-
rently support reasoning about denial-of-service, we behave
as if their information load were compounded with the outer
messages of this exchange.

We divide the possible GDOI events according to the prin-
cipals that engage in them. There are four types of princi-
pals: the intruder, the GCKS, the group member, and an au-
thorization server responsible for issuing credentials. Since
a group member may be honest or dishonest, we represent
a general group member as member(M, H), an honest mem-
ber as member(M, honest), and a dishonest group member
as member(M, dishonest).

4.2.1 Intruder Events
There is only one intruder event of interest to us here:

the event in which the intruder P learns a word W . We
represent that as follows:

learn(P, (), W, N)

4.2.2 Authorization Server Event
The authorization server is responsible only for issuing

credentials to principals. In order to simplify matters, we
assume that each group has its own set of credentials appro-
priate to it.

This action is represented by

auth issuecreds(AUTH, X, (C, G), N)

where X is the principal to whom the credentials are issued,
C stands for the credentials, and G is the group to which
the credentials apply.

4.2.3 The GCKS
The GCKS performs a number of actions of interest. It

can create a key encryption key. It can admit and expel
members. It can also cause a key to become current, and
cause a key to expire. It can send a key, either in response
to a member’s request, or as part of a group-key push data-
gram. We represent these as follows:

Creating a key:
gcks createkey(GCKS , (), (G, KG), N)

where G is the group for which GCKS is creating the key
encryption key, KG.

Sending a key as a result of a pull exchange:

gcks sendpullkey(GCKS , M, (KG, NM , NGM , G, KGM), N)

where M is the member, KG is the key, G is the group, KGM

is the pairwise key, NM is the nonce M uses in initiating
the exchange and NGM is the nonce G uses in responding.
We also use the gcks sendpullkey event to cover the GCKS’s
admitting M to the group, since M requests membership
by initiating a pull protocol. We use NGM to identify M ’s
particular membership in the group. Note that this may
not be the identifier used in a real application (as a mat-
ter of fact, GDOI does not specify any kind of membership
identifier); however it is useful from a requirements point of
view in that it allows us to distinguish between different and
possibly overlapping memberships on the part of the same
individual.

Sending a key in a push message:

gcks sendpushkey(GCKS , (), (G, KG, K′
G), N)

The event gcks sendpushkey causes one key, K′
G, to expire

for group G and causes the next one KG to become current.
The initial key created for a group is first sent in a pull-
key message. Except for such initial keys, we assume for
convenience that a push-key message making KG current is
sent immediately after the create event that produced KG

(without the possibility of an intervening distribution in a
pull-key message). We also assume that the initial key is
sent in at least one pull-key response that takes place im-
mediately after its creation. We say the initial key becomes
current when that first pull-key response containing it is
sent.

We note that neither gcks sendpullkey nor gcks sendpushkey
tell the whole story about the keying material passed in
these two messages. In actual fact, the pull-key message
will contain, not only the current key, but also the relevant
part of the key hierarchy that the member M needs to ac-
cess the key. Likewise the gcks sendpushkey message will
also contain the portion of the key hierarchy that needs to
be changed to give members access to the new key and pre-
vent former members from accessing the new key, if this is
desired.

Canceling a membership:

gcks cancel(GCKS , M, (G, NGM), N)

where M is the member, G is the group, and NGM identi-
fies the membership. Note that expulsion cancels only the
membership with identifier NGM , not all memberships of
that member. In order to truly expel the member, all its
memberships would have to be canceled.

We note that gcks cancel would be achieved in GDOI by
having the GCKS send out a push message containing a new
key hierarchy from which M is excluded. We choose to spec-
ify gcks cancel separately from gcks sendpushkey since this
allows us to avoid issues such as canceling multiple mem-
berships in one message, etc.

Sending a POP:

gcks sendpop(GCKS , M, (G, NGM , NM , CG), N)

This event describes a GCKS sending a POP in response to
a members request. CG stands for G’s credentials.

Stealing a Key:
Finally, we need to specify the stealing of a key. We think of
this not as something done by the intruder, but as something
done by the GCKS. In other words, the action of stealing
a key needs to be precipitated by the GCKS “losing” a key.
This appears paradoxical, but it is a result of our model’s
assumption that actions involving a piece of data can only
be initiated by those in possession of it. Note that we could
also include actions describing members losing keys, but that
this would be redundant.

We have two event statements, one describing the loss of a
key-encryption key, and one describing the loss of a pairwise
key:

gcks losegroupkey(GCKS , (), (G, KG), N)

where G is the group and KG is the key.

gcks losepairwisekey(GCKS , (), (GCKS , M, KGM), N)

where KGM is the pairwise key and M is the member who
shares the key with the GCKS.

4.2.4 Member Actions
The relevant member actions involve accepting a key and

requesting a key. A member can only request a key by ini-
tiating a group-key pull exchange, but it may accept a key
as a result of receiving the final message of a group-key pull
exchange or as a result of receiving a group-key push mes-
sage.

The events are specified as follows.

Requesting a Key:
member requestkey(M,GCKS , (G, NM , KGM), N)

where GCKS is the GCKS, G is the group, NM is the nonce
M uses in initiating the request (to distinguish it from other
requests), and KGM is the pairwise key shared between
GCKS and M . This corresponds to M sending the first
message in a group-key pull exchange.

Accepting a Key From a Group-key Pull Exchange:
member acceptpullkey(M,GCKS , (G, KG, NGM , NM , KGM), N)

where GCKS is the GCKS, G is the group, KG is the key,
and KGM is the pairwise key shared between M and the
GCKS. Again, this does not give the whole picture, as it
leaves out the portion of the key hierarchy that the GCKS
sends to M .

Accepting a Key From a Group-key Push Message:
member acceptpushkey(M,GCKS , (G, KG, K′

G), N)

where GCKS is the GCKS, G is the group, KG is the new
key, and K′

G is the current key encryption key. Again, we
leave out the portion of the key hierarchy that M uses to
authenticate the message and decrypt KG.

For conciseness, we set

member acceptkey(M,GCKS , (G, KG), N)

↔ member acceptpullkey(M,GCKS , (G, KG, , ,), N)
∨member acceptpushkey(M,GCKS , (G, KG,), N)

Here and in the rest of this paper, we write “ ” for an argu-
ment whose actual value is irrelevant. Each occurrence can
be thought of as a distinct variable.

Sending a POP:
member sendpop(M,GCKS , (G, NM , NGM , CM), N)

This event describes a member M sending a POP in re-
sponse to a GCKS’s request. CM stands for M ’s credentials.

4.3 Authentication Requirements
Since GDOI is only intended to address the problem of

secure distribution of group keys, not the authentication of
group members to each other, its authentication require-
ments are simple and rather similar to those for two-party
protocols. Thus we give them first. There are authentication
requirements for both the group member and the GCKS.
The group member will want to know, if it accepts a key,
that that key was generated by the GCKS for that group.
The GCKS will want to know that, if it sends a key to a
group member, then that group member requested a key.
Finally, there are authentication requirements on the proof
of possession (POP) algorithm. If the GCKS accepts a proof
of possession from a group member, then the group mem-
ber should have obtained the appropriate authorizations and
the group member should have responded to the GCKS’s re-
quest for a POP. A similar requirement holds for the group
member’s accepting a POP from the GCKS. We consider
the three types of authentication below.

4.3.1 Authentication of a Key to a Group Member
Since there are two different ways a group member can

receive a key, we have two different sets of requirement. In
the case of the group member M accepting a key KG for
group G as a result of the pull protocol, we require that one
of two things must have happened; either the pairwise key
shared between the member and the GCKS was lost, or the
GCKS did send KG to M for use in G:

member acceptpullkey(M,GCKS , (G, KG, NM , NGM , KGM),)

→ 3gcks losepairwisekey(GCKS , (), (M, KGM),)
∨3gcks sendpullkey(GCKS , M, (KG, , , G, KGM),)

In the case of the member M accepting the key KG for
group G as the result of receiving a push datagram, we again
require that the GCKS has sent KG for use in G in a push
datagram protected by key K′

G:

member acceptpushkey(M,GCKS , (G, KG, K′
G),)

→ 3gcks sendpushkey(GCKS , (), (G, KG, K′
G),)

Observe that this requirement does not make any provision
for losing an old group key K′

G since gcks sendpushkey mes-
sages are authenticated with the signature of the GCKS.

4.3.2 Authentication of a Group Member’s Request
Although the GCKS has two ways of sending keys, it has

only one way of sending a key to a specific group member:
via a pull protocol. Thus we need only one requirement here,
saying that if the GCKS sent a key to a group member in
response to a pull protocol request, then either the pair-
wise key between the GCKS and group member was lost,
or the group member actually sent that request. We need a
unique way of identifying the group member’s request, and
so we will use the nonce the group member sends in the first
message of the pull protocol:

gcks sendpullkey(GCKS , M, (KG, NM , NGM , G, KGM),)

→ 3gcks losepairwisekey(GCKS , (), (M, KGM),)
∨3member requestkey(M,GCKS , (G, NM , KGM),)

4.3.3 Authentication of a Proof of Possession
For proofs of possession, we want to show that, for either

the GCKS or a member, if A accepts a key requiring a proof
of possession from B, then B sent the POP in response to

A’s request, and B obtained the credentials from the appro-
priate authority. The act of obtaining credentials is outside
the scope of GDOI; however, we leave it in the requirement
specification because it is clearly the intent of the POP.

gcks sendpullkey(GCKS , M, (KG, NM , NGM , G, KGM),)

→3 (member sendpop(M,GCKS , (G, NM , NGM , M, CM),)
∧ 3auth issuecreds(AUTH, M, (CM , G),))

member acceptpullkey(M,GCKS , (KG, NM , NGM , G, KGM),)

→3 (gcks sendpop(GCKS , M(G, NM , NGM , CM),)
∧ 3auth issuecreds(AUTH, M, (CM , G),))

4.4 Freshness Requirements
For GDOI, we can identify two types of freshness. One,

we call recency freshness. This is the requirement that, if a
principal receives a piece of information, such as a key, then
it must have been current at some specified point in time
according to the principal’s local clock, for example when
the principal requested it. The other, we call sequential
freshness. This is the requirement that, if a principal accepts
a key KG, then it could not have previously accepted a key
that became current after KG.

4.4.1 Recency Freshness for Pull Protocol

member acceptpullkey(M,GCKS , (G, NM , NGM , K′
G, KGM), N)

→ 3gcks losepairwisekey(GCKS , (), (M, KGM),)
∨¬(3 (member requestkey(M,GCKS , (G, NM , KGM), N)

∧ 3gcks sendpushkey(GCKS , (), (G, KG, K′
G),)))

Note that the definition of recency freshness is one of the
few places we make use of round numbers, since the member
requests and accepts the key in the same round. Note also
that the GCKS’s act of sending a key KG protected by K′

G

using the push protocol results in the expiration of K′
G.

4.4.2 Sequential Freshness for Pull Protocol

member acceptpullkey(M,GCKS , (G, NM , NGM , KG, KGM),)

→ 3gcks losepairwisekey(GCKS , (), (M, KGM),)
∨¬(3 (member acceptkey(M,GCKS , (G, K′

G),)
∧ 3 (gcks createkey(GCKS , (), (G, K′

G),)
∧ 3gcks createkey(GCKS , (), (G, KG),)))

Recall from Section 4.2.3 that a group key is sent (and
therefore made current) immediately after it is created by
the GCKS.

4.4.3 Sequential Freshness for Push Protocol

member acceptpushkey(M,GCKS , (G, KG, K′
G),)

→ ¬(3 (member acceptkey(M,GCKS , (G, K′′
G),)

∧ 3 (gcks createkey(GCKS , (), (G, K′′
G),)

∧ 3gcks createkey(GCKS , (), (G, KG),)))

Note that we do not specify recency freshness as a re-
quirement for the push protocol. This can be achieved, if
desired, by including timestamps in the Security Associa-
tion, but this is not a requirement of GDOI.

4.4.4 Freshness of a Member’s Key Request
We now consider a freshness requirement from the GCKS’s

point of view. When the GCKS responds to a member’s re-
quest with a key, it must be sure that this is a new request,
not a replay of some old request. Since a member’s request
contains a nonce which is intended to be unique, we make
this into a requirement that a GCKS should not have pre-
viously distributed a key to that member using that nonce.

Note that this freshness requirement can only be guaran-
teed for an honest member, since there is nothing prevent-
ing a dishonest member from replaying an old request and
then participating in the protocol to obtain a key. Since
honest members are the only ones we are interested in pro-
tecting anyway, this is not a problem for us. However, we
need a way of distinguishing between honest and dishonest
members. We do this by borrowing a trick from the NRL
Protocol Analyzer specification language, and referring to
principals as member(M, H) where H is a variable that can
be instantiated to honest or dishonest. At this point we are
only interest in member(M, honest):

gcks sendpullkey(GCKS , Mh, (KG, NM , NGM , G, KGM),)

→ 3gcks losepairwisekey(GCKS , (), (Mh, KGM),)
∨¬3gcks sendpullkey(GCKS , Mh, (K

′
G, NM , N ′

GM , G, KGM),)

where Mh = member(M, honest).

4.4.5 Freshness of Proof of Possession
Freshness requirements for Proof of Possession are more

similar to two-party freshness requirements than some of
the others we have visited. Since POPs are computed on
nonces supplied by sender and receiver we require that, if a
principal accepts a POP for two nonces, then it should not
have accepted it previously. Since the POP is computed on
the sender’s and receiver’s nonces, this can be enforced by
requiring that the GCKS does not engage in a sendpullkey
event based on the same nonces twice, and that a member
does not engage in an member acceptpullkey event based on
the same nonces twice. Note that the GCKS’s freshness
requirement is similar, but somewhat stronger than, the re-
quirement for freshness of a member’s key request; it is not
dependent on the pairwise key being uncompromised.

gcks sendpullkey(GCKS , Mh, (KG, NM , NGM , G, KGM),)

→¬3gcks sendpullkey(GCKS , Mh, (K
′
G, NM , NGM , G, K′

GM),)

member acceptpullkey(M,GCKS , (KG, NM , NGM , G, KGM),)

→¬3member acceptpullkey(M,GCKS , (K′
G, NM, NGM, G′, K′

GM),)

where again Mh = member(M, honest).

4.5 Secrecy Requirements
GDOI has one basic secrecy requirement, that keys should

only be learned by members of the group. However, we may
want to put other conditions on this requirement. For ex-
ample, we may require that new members should not have
access to old keys (backward access control), and that ex-
pelled members will not have access to any keys generated
after they were expelled (forward access control). GDOI
also allows for an option that provides a degree of protec-
tion against compromise of pairwise keys; it allows for the
optional use of Diffie-Hellman to assure perfect forward se-
crecy : if a pairwise key is stolen, then the intruder should
only be able to learn key encryption keys distributed after
the event.

As we can see, the different secrecy requirements are not
quite orthogonal, and they can interact with each other in
different ways. For example, one would not want to waste
time with perfect forward secrecy if one did not also have
backwards access control. In general, it is assumed that it
is more likely that a dishonest member will join the group
than that a pairwise key shared between only two principals
will be stolen. So it makes little sense to use perfect forward
secrecy to protect old keys, if they could be compromised

by having a group key distributed to a dishonest principal.
Likewise, requirements such as forward and backward access
control should not only govern the effects of the distribution
of keys, but other events such as the stealing of keys. For
example, if members should no longer have access to new
keys after leaving the group, then an intruder’s stealing a
key should not give it access to subsequent keys either.

Our solution to this problem is to define a number of con-
ditions describing sequences of events that define the sit-
uation under which an intruder might learn a key. These
conditions can then be mixed and matched to put together
the appropriate requirement. We can then use the NPA-
TRL logic to reduce the requirements to normal form, when
necessary.

In the remainder of this section, we describe the various
sequences. These include five “base cases” that describe
some simple sequences of events that could lead to key com-
promise, as well as two recursively defined cases that de-
scribe forward access control without backward access con-
trol, and vice versa. We also give several examples showing
how the various cases can be combined to produce different
types of requirements.

4.5.1 The Base Cases
The five base cases are as follows:

BC1(KG, G):

gcks losegroupkey(GCKS , (), (G, KG),)

This describes the a group key-encryption key being
stolen.

BC2a(KG, G):

3(gcks sendpushkey(GCKS , (), (G, KG, K′
G), N)

∧ 3gcks sendpullkey(GCKS , Md, (G, , NGM , K′′
G, KGM),))

∧¬3(gcks sendpushkey(GCKS , (), (G, KG, K′
G), N)

∧ 3gcks cancel(GCKS , Md, (G, NGM),))

where Md = member(M, dishonest). This describes a
group key being distributed while a dishonest member
is in the group. Note that it is in two parts. The first
says that the dishonest member has joined the group;
the second says that the member has not left it yet. In
order to take care of the possibility of multiple joinings
and leavings, we give both join and leave the same
index NGM , which uniquely identifies M ’s joining the
group.

BC2b(KG, G):

3gcks sendpullkey(GCKS , Md, (G, , NGM , KG, KGM),)

for Md = member(M, dishonest). This describes a group
key KG being distributed to a dishonest member via
a pull protocol, that is, the dishonest member is being
admitted to the group.

BC3a(KG, G):

3gcks losepairwisekey(GCKS , (), (M, KGM),)
∧3gcks sendpullkey(GCKS , M, (G, , , KG, KGM),)

This describes the result of a pairwise key being lost
and a key being sent using that pairwise key.

BC3b(KG, G):

3 (gcks sendpullkey(GCKS , M, (G, , , KG, KGM),)
∧ 3gcks losepairwisekey(GCKS , (), (M, KGM),))

This describes a pairwise key being lost and a key being
sent using that pairwise key after the pairwise key is
lost.

4.5.2 The Recursive Cases
There are two recursive cases. The first describes an in-

truder learning an old key after a later key has become cur-
rent. The second describes the intruder learning a key be-
fore another key expires. We call these two cases “backward
inference” and “forward inference.”

BI(K′
G, G)

3learn(P, (), (KG, G),)
∧3(gcks createkey(GCKS , (), (G, KG),)

∧ 3gcks createkey(GCKS , (), (G, K′
G),))

Note that when a new key is sent, the old key expires.
And, we assume any (non-initial) key is sent in a push-
key message as soon as it is created. Thus BI for K′

G

describes an intruder learning a key KG that became
current after a key K′

G was current.

FI(KG, G)

3learn(P, (), (K′′
G, G),)

∧3(gcks sendpushkey(GCKS , (), (G, KG, K′
G),)

∧ 3gcks sendpushkey(GCKS , (), (G, K′′
G, K′′′

G),))

FI describes an intruder learning a key K′′
G that expired

before a later key KG was generated.

Backward Inference will be used to specify forward ac-
cess control without backward access control: If an intruder
learns a key KG, then BI(KG, G) will be listed among the
set of possible paths to that event, but not FI(KG, G), that
is, the intruder may have learned KG as a result of learning
a key K′

G that expired previously to KG, but not a key K∗
G

that was generated after KG expired. Similarly, Forward
Inference will be used to specify backward access control
without forward access control: if an intruder learns a key
KG, then FI(KG, G) will be listed among the set of of pos-
sible paths to that event, but not BI(KG, G).

We note that there appear to be some major changes from
the original, informal, definition of forward and backward
access control. The original definition put the requirement
on the knowledge of any group member, not on the intruder.
Also, the original requirement discussed a member learning a
key as a result of joining the group, while we simply consider
the results of the intruder learning a key without specifying
how it was learned.

Our rationale for changing the focus from member to in-
truder can be expressed in two steps. In the NRL Protocol
Analyzer model, we assume that dishonest group members
can do everything honest group members do and more, since
honest members can only obey the rules of the protocol.
Thus any conditions on a dishonest member’s learning a
key should also hold for an honest member. Secondly, we
assume that all dishonest members share information with
the intruder, so that any conditions on the intruder’s learn-
ing a key would imply the same condition for a dishonest
member learning that information.

4.5.3 Sample Requirements
In this section, we show how the various “cases” can be

combined into requirements.

Weak Secrecy
The weakest form of secrecy requirement simply requires
that the protocol should protect against key compromise
given the most benign assumptions possible: that is, that
neither pairwise or key encryption keys have been lost, and
no dishonest members have even joined the group. This can
be described in terms of three separate conditions:

learn(P, (), (KG, G),)

→ BC1(K′
G, G) ∨ BC2b(K′

G, G) ∨ BC3a(K′
G, G)

In other words, the intruder should not learn a key KG for G
unless some group key has previously been lost, a dishonest
member joined the group at some time, or a pairwise key
that was used to distribute a group key was stolen, either
before or after being used.

Strong Secrecy
We can also use the base cases to formulate the strongest
type of secrecy possible. In strong secrecy, the intruder
learns a key KG only if KG is lost, a dishonest member
received KG, either when it joined the group or while it was
a member of the group, or if a pairwise key was stolen and
used to distribute KG. We may or may not wish to require
perfect forward secrecy.

Here, for example, is strong secrecy with perfect forward
secrecy:

learn(P, (), (KG, G),)

→ BC1(KG, G) ∨ BC2a(KG, G) ∨ BC2b(KG, G)
∨BC3b(KG, G)

Forward Access Control
Forward access control (without backward access control)
can be thought of as strong secrecy together with added
condition of backward inference: An intruder can learn a
key, not only if the key was lost, distributed to a dishonest
member, or distributed using a lost pairwise key, but if the
key became current before the intruder learned a later key,
e.g., because a dishonest member joined the group. We do
not include perfect forward secrecy, since protecting against
old keys being compromised as a result of a stolen pairwise
key makes no sense if the keys could be learned as a result
of a dishonest member joining the group at any point:

learn(P, (), (KG, G),)

→ BC1(KG, G) ∨ BC2a(KG, G) ∨ BC2b(KG, G)
∨BC3a(KG, G) ∨ BI(KG, G)

Backward Access Control
Backward access control (without forward access control)
can be specified similarly to forward access control, except
that we replace backward with forward inference. We can
require perfect forward secrecy or not. Here, for example, is
backward access control without forward access control but
with perfect forward secrecy:

learn(P, (), (KG, G),)

→ BC1(KG, G) ∨ BC2a(KG, G) ∨ BC2b(KG, G)
∨BC3b(KG, G) ∨ FI(KG, G)

If we wanted to omit the perfect forward secrecy requirement
we would substitute BC3a(KG, G) for BC3b(KG, G).

In appendix A we show how to put the requirements for
Forward and Backward Access Control into normal form.

5. CONCLUSIONS
We have presented a set of formal security requirements

for the group protocol GDOI. In developing these require-
ments we learned much, not only about GDOI itself, but
about the nature of requirements for open-ended crypto-
graphic protocols. This has motivated us to develop the
NPATRL requirements language into a full-scale logic that
can be used to reason about and simplify requirements as
well as specify them.

As this paper is being written, we are currently using the
NRL Protocol Analyzer to verify that GDOI satisfies these
requirements. This in turn may lead to a revision or im-
provement of the requirements as we discover more by our
analysis. We have also been able to use our formalization of
the requirements to discover and suggest improvements to
GDOI. These suggestions have been incorporated into later
versions of the draft. Thus, we have already found these
requirements to be useful.

6. REFERENCES
[1] M. Baugher, T. Hardjono, H. Harney, and B. Weis.

Group domain of interpretation for ISAKMP.
available at http://search.ietf.org/internet-drafts/

draft-irtf-smug-gdoi-01.txt, January 2001.

[2] R. Canetti, J. Garay, G. Itkis, D. Micciancio,
M. Naor, and B. Pinkas. Multicast security: A
taxonomy and some efficient constructions. In Proc. of
INFOCOM’99, vol. 2, pages 708–716, March 1999.

[3] Brian F. Chellas. Modal Logic: An Introduction.
Cambridge University Press, 1980.

[4] Danny Dolev and Andrew C. Yao. On the security of
public-key protocols. IEEE Transactions on
Information Theory, 2(29):198–208, March 1983.
Preliminary version in Proc. 22nd Annual IEEE Symp.
Foundations of Computer Science, 1981, 350–357.

[5] Naganand Doraswamy and Dan Harkins. IPSEC: The
New Security Standard for the Internet, Intranets, and
Virtual Private Networks. Prentice Hall, 1999.

[6] Robert Goldblatt. Logics of Time and Computation,
2nd edition, volume 7 of CSLI Lecture Notes. CSLI
Publications, Stanford, 1992.

[7] D. Harkins and D. Carrel. The Internet Key Exchange
(IKE). RFC 2409, IETF, November 1998. available at
ftp://ftp.isi.edu/in-notes/rfc2409.txt.

[8] G.E. Hughes and M.J. Creswell. A New Introduction
to Modal Logic. Routledge, 1996.

[9] C. Meadows and P. Syverson. A formal specification of
requirements for payment transactions in the SET
protocol. In R. Hirschfeld, editor, Financial
Cryptography, FC’98, pages 122–140. Springer-Verlag,
LNCS 1465, 1998.

[10] Catherine Meadows. A model of computation for the
NRL Protocol Analyzer. In Proceedings of the 7th
Computer Security Foundations Workshop, pages
84–89. IEEE CS Press, June 1994.

[11] Catherine Meadows. The NRL Protocol Analyzer: An

overview. Journal of Logic Programming,
26(2):113–131, February 1996.

[12] Catherine Meadows. A cost-based framework for
analysis of denial of service in networks. Journal of
Computer Security, 9(1–2):143–164, 2001.

[13] M. Steiner, G. Tsudik, and M. Waidner. Key
agreement in dynamic peer groups. IEEE
Transactions on Parallel and Distributed Systems,
11(8), August 2000.

[14] P. Syverson and C. Meadows. A logical language for
specifying cryptographic protocol requirements. In
Proceedings of the IEEE Computer Society Symposium
on Research in Security and Privacy, pages 165–177.
IEEE CS Press, May 1993.

[15] P. Syverson and C. Meadows. Formal requirements for
key distribution protocols. In A. De Santis, editor,
Advances in Cryptology — EUROCRYPT ’94, pages
32–331. Springer-Verlag, LNCS 950, 1994.

[16] P. Syverson and C. Meadows. A formal language for
cryptographic protocol requirements. Designs, Codes,
and Cryptography, 7(1 and 2):27–59, January 1996.

APPENDIX

A. REMOVING RECURSION
In this appendix we show how we use the NPATRL logic

to remove recursion from the requirements for forward and
backwards access control. Removing recursion is not only
desirable from the point of view of the NRL Protocol Ana-
lyzer, but also because a recursively defined condition may
cause an infinite regression in other model checkers and the-
orem provers.

We present only the proof for backward access control;
that for forward access control is similar.

Lemma 1.
The backward access control condition BAC(KG, G) =

learn(P, (), (KG, G),)
→ 3BC1(KG, G) ∨ 3BC2a(KG, G) ∨ 3BC2b(KG, G)

∨3BC3a(KG, G) ∨ 3FI(KG, G)

is equivalent to the conditions NRFAC(KG, G) =

learn(P, (), (KG, G),)
→ 3BC1(KG, G) ∨ 3BC2a(KG, G) ∨ 3BC2b(KG, G)

∨3BC3a(KG, G) ∨ 3NRFI(KG, G),

where NRFI(KG, G) =

(BC1(K′′
G, G)∨BC2a(K′′

G, G)∨BC2b(K′′
G, G)∨3BC3a(K′′

G, G))
∧ gcks sendpushkey(GCKS , (), (G, KG, K′

G),)
∧3gcks sendpushkey(GCKS , (), (G, K′′

G, K′′′
G),).

Proof. We make use of the following facts that follow
from the NPATRL axioms. For reasons of space, we leave
the proofs as an exercise to the reader:

1. 3(A ∧ B) → 3A ∧ 3B;

2. 33A → 3A, and;

3. (A ∧ 3B) ∧ (C ∧ 3A) → C ∧ 3B.

For purposes of of this proof, let BC(K, G) =

3BC1(K, G) ∨ 3BC2a(K, G) ∨ 3BC2b(K, G) ∨ 3BC3a(K, G).

We need to show that “learn(P, (), (K, G),) → BC(K, G) ∨
3NRFI(K, G)” is logically equivalent to “learn(P, (), (K, G),)

→ BC(K, G) ∨ 3FI(K, G)”. It is clear that “3BC(K, G) ∨
3NRFI(K, G)” implies “3BC(K, G) ∨ 3FI(K, G)”, since
“(BC1(K1, G) ∨ BC2a(K1, G) ∨ BC2b(K1, G) ∨ BC3a(K1, G)”
implies “learn(P, (), (K1, G),)”.

We prove the implication in the other direction by induc-
tion on the age of K1. Suppose that K is the first key used
by the GCKS for G. Then, since there is no K1 that was
distributed before K, neither “FI(K, G)” nor “NRFI(K, G)”
holds, and so “BC(K, G) ∨ FI(K, G)” is trivially equivalent
to “BC(K, G) ∨ NRFI(K, G)”.

Suppose that now that the result holds for the k’th key
Kn used by the GCKS, for all k < n. Let Kn by the n’th
key. Then

learn(P, (), Kn, G),)
→ 3BC(Kn, G)

∨ (learn(P, (), (Kk, G),)
∧ gcks sendpushkey(GCKS , (), (G, Kn, K2),)
∧ 3gcks sendpushkey(GCKS , (), (G, Kk, K3),)),

for some k. Since Kk was used before Kn, we have k < n,
and by the induction hypothesis we get

learn(P, (), (Kn, G),)
→ BC(Kn, G)

∨3(3(BC(Ki, G)
∧ gcks sendpushkey(GCKS , (), (G, Kk, K′′′),)
∧ 3gcks sendpushkey(GCKS , (), (G, Ki, K

′′′′),)))
∧ (gcks sendpushkey(GCKS , (), (G, Kn, K′),)

∧ gcks sendpushkey(GCKS , (), (G, Kk, K′′),)))).

Using the facts “3(A ∧ B) → 3A ∧ 3B”, that “33A →
3A”, and that “(A ∧ 3B) ∧ (C ∧ 3A) → C ∧ 3B”, we
have

learn(P, (), Kn, G),)
→ BC(Kn, G)

∨3(BC(Ki, G)
∧ gcks sendpushkey(GCKS , (), (G, Kn, K′′′),)
∧ 3gcks sendpushkey(GCKS , (), (G, Ki, K

′′′′),)),

which is the result we need.

Lemma 2.
The forward access control condition FAC(KG, G) =

learn(P, (), (KG, G),)
→ 3BC1(KG, G) ∨ 3BC2a(KG, G) ∨ 3BC2b(KG, G)

∨3BC3a(KG, G) ∨ 3BI(KG, G)

is equivalent to the conditions NRBAC(KG, G) =

learn(P, (), (KG, G),)
→ 3BC1(KG, G) ∨ 3BC2a(KG, G) ∨ 3BC2b(KG, G)

∨3BC3a(KG, G) ∨ 3NRBI(KG, G),

where NRBI(K′′
G, G) =

(BC1(KG, G)∨BC2a(KG, G)∨BC2b(KG, G)∨3BC3a(KG, G))
∧ gcks sendpushkey(GCKS , (), (G, KG, K′

G),)
∧3gcks sendpushkey(GCKS , (), (G, K′′

G, K′′′
G),).

Proof. The proof is the same as for backward access
control, except the base induction case is the most recent
key instead of the first key, and the induction is on distance
from the most recent key instead of on distance from the
earliest key.

